Objectives

After completion of this self-study activity, the learner will be able to:

1. Discuss the types and selection criteria for packaging systems for items to be steam sterilized.
2. Explain how to prepare and label a package for steam sterilization.
3. Write a policy and procedure for selection and use of packaging systems, preparation and loading of steam sterilizers.
Education & Training

Test Questions

True or False

1. The purpose of any packaging system is to allow sterilization of the package contents, maintain sterility of contents until the package is opened, and permit delivery of contents without contamination.

2. Facilities should have a copy of the manufacturer’s documented test data that provide assurance the packaging system selected meets the criteria required.

3. Holes or tears in textiles may be repaired or patched by sewing.

4. Filter material used in rigid container systems can be easily tested by healthcare personnel by using the nationally recognized test for the microbial barrier performance.

5. Labeling is important for quality assurance, inventory control and stock-rotation purposes.

6. Single peel packing is sufficient unless the package contains more than one item or would be difficult to open aseptically with only one peel pack.

7. It is OK to put paper-plastic pouches within wrapped sets or containment devices.

8. Mixing sterilizer loads of textiles, peel packs and container systems is fine as long as the containers go on the top shelf.

9. The combined weight of the containment device, the instruments, and any accessories or wrappers shall not exceed 25 pounds when the containment device load is configured according to the manufacturer’s recommendations.

10. To facilitate air removal and steam penetration and drying, packages of textiles should be loaded on the cart loosely.

Introduction

A major responsibility of healthcare providers is to minimize patient risks. In the operating room, this is particularly important in regards to surgical wound infections. A vital way to help prevent surgical wound infections is to present surgical items that are free of contamination at the time of use. This is accomplished by subjecting them to a validated sterilization process and maintaining the sterility up to the time they are used.¹

Sterilization is a science that utilizes many different technologies to accomplish the destruction of all microorganisms. However, once items are sterile, that sterility must also be maintained up to the time they are needed. Some of the components to sterilization such as packaging, preparation and loading of steam sterilizers are often overlooked or not readily understood. There are various methods and techniques used in packaging instrumentation and medical devices for sterilization, as well as instrument/tray preparation and sterilizer loading.

This inservice will provide guidelines for evaluation, selection and use of packaging systems, preparation and assembly of surgical instrumentation and loading of the steam sterilizer as discussed in the new Association for the Advancement of Medical Instrumentation standard Comprehensive guide to steam sterilization and sterility assurance in health care facilities, ANSI/AAMI ST79:2006, as well as the 2006 Association of periOperative Registered Nurses’ (AORN) Recommended Practices on Sterilization in the Perioperative Practice Setting.

Personnel considerations

Accountability for performing sterilization processes should be assigned to competent individuals who have knowledge of all aspects of disinfection and sterilization procedures and safety precautions.

Supervisory personnel responsible for sterilization and disinfection should have formal training and be knowledgeable about each method used. They should be aware of the need to acquire and follow the device and sterilizer manufacturer’s written instructions for use. As with all processing activities, employees performing these duties should be given special training, and their competencies should be verified.²

Selecting appropriate packaging materials

The purpose of any packaging system is to allow sterilization of the package contents, maintain sterility of contents until the package is opened, and permit delivery of contents without contamination.

There are many types of packaging systems. The choice of packaging systems include:

- **Woven fabrics**, usually 100% cotton, cotton-polyester blends, and synthetic blends;

- **Nonwoven materials**, made of plastic polymers, cellulose fibers or washed paper pulp bonded under pressure into sheets, not woven on a loom. These are usually designed for single use;

- **Peel pouches** of plastic and/or paper, made of a variety of materials, including paper, cellophane, polyethylene, Tyvek™ and various paper-plastic combinations; and

- **Rigid container systems** that are specially designed metal or plastic containers.³

When selecting a packaging material, several factors must be taken into consideration. The selection should be dependent on many things, including size and weight of device, sterilization method, and storage location. We no longer just deal with what I call the “knives, forks and spoons” or basic stainless steel surgical instruments. Advances in surgical technique have resulted in the regular use of a wide assortment of complex and sophisticated surgical instrumentation. Healthcare professionals need to make sure these delicate and expensive items are protected, as well as sterilized according to the medical device manufacturer’s written instructions.
Personnel should be aware of how the sterilization method and the devices being sterilized affect the selection of the appropriate packaging technique. Knowledge of how the packaging method affects the sterilization parameters is also important.\(^2\)

Sterilization packaging systems should be suitable to device(s) being sterilized. The packaging system should:
- permit identification of the contents,
- completely secure the devices,
- protect the package contents from physical damage (e.g., tears, puncture, compression),
- prevent the transfer of microorganisms,
- be free of holes,
- be free of toxic ingredients,
- be tamper-resistant,
- permit adequate air removal,
- allow sterilant penetration and removal,
- be non-limiting,
- be large enough to distribute the contents evenly,
- maintain sterility of package contents until opened,
- allow aseptic presentation of the contents,
- be cost effective, and
- have manufacturer’s written recommendations for use.

Facilities should have a copy of the medical device manufacturer’s documented test data that will provide assurance that the packaging system selected meets the criteria required.\(^1,2\)

Not all packaging systems are created equal

Packaging systems should be compatible with the specific type of sterilization intended. Not all packaging methods are appropriate for all types of sterilization. Some systems, such as those made of plastic or polymers may require an increased drying time. Some rigid containers systems can only be used in dynamic-air-removal (e.g., prevacuum) steam sterilizers. Some peel packs are not appropriate for all types of low temperature sterilization.\(^1,2\)

Packaging design and preparation

All packaging materials should be at room temperature (68°F to 73°F/20°C-23°C) and at a relative humidity of 30-60% for at least two hours before use. Packaging materials should be routinely examined for any holes, defects and inappropriate extraneous material. Using the manufacturers’ written recommendations, facilities should develop policies and procedures for all packaging techniques.\(^1,2\)

When using wrappers, woven or nonwoven, the package should be wrapped snug, but not too tightly. Loose wrapping could cause low spots that could collect condensate, and wrapping too tightly could result in strike-through (“passage of a liquid that could contain microorganisms through a barrier product, including its seams and/or points of attachment”).\(^2\) Rigid sterilization container systems should be scientifically proven to be suitable for the specific sterilization cycle to be used: When items are being prepared for sterilization, the container system should be verified as the correct one for the cycle being used. Before use, filters should be inspected for visible holes. “Also for container systems designed for terminal sterilization (not flash sterilization), the user should obtain and follow the manufacturer’s instructions to ascertain that the valve system opened for sterilization and closed after the drying cycle”\(^2\)

The above requirements are necessary because “temperature and humidity equilibration of packaging materials and product is needed to permit adequate steam penetration and to avoid superheating. Temperature affects relative humidity, so a preconditioning temperature range is also recommended. Experience has shown that if the packaging and product are too dry, problems such as superheating and positive biological indicators (BIs) can result. The suggested humidity and temperature ranges were chosen for consistency with the conditions recommended for general environmental control in work areas. The 2-hour preconditioning period is minimum; some packaging materials might require a much longer equilibration time, depending on previous storage conditions. For sterility maintenance and aseptic presentation, certain items require double wrapping. Rigid sterilization container systems vary in their mechanics, their specific performance characteristics and their suitability for particular sterilization cycles. A change in the filter material (e.g., a change in brand) can affect air removal or sterilant penetration and evacuation in a container system. Filter material cannot be tested easily by health care personnel. There is no nationally recognized test for the microbial barrier performance of filters. However, as with any packaging system, inspection for integrity is part of a good quality assurance program.”\(^2\)

Lot control numbers

All packages intended for use as a sterile product should be labeled with a lot control identification. The “sterilization label” or “load sticker” should include the sterilizer identification number/code, the date of sterilization and the cycle number. This is necessary in the event that a sterilization recall is necessary and items must be retrieved.

For proper stock rotation each item should be labeled with an expiration date. “Each item in a load should be labeled with a control date for stock rotation and the following statement (or its equivalent): ‘Contents sterile unless package is open or damaged.’ Please check before using.”\(^2\)

Labels are usually affixed during load preparation. The labeling should be done just prior to the load being processed. If a facility chooses to label packages after the sterilization cycle,
the labeling should only be done after the packages are cool and dry.1,3

“Ideally, every reprocessed medical device, especially an implant, should be fully traceable to the patient on whom it is used or in whom it is implanted: such traceability can be accomplished by recording the sterilizer load identifier on the patient chart or the patient name on the load record.”2

There is a higher degree of risk of infection to patients with an implant because:

“First, they are left behind at surgery, so if there are microorganisms on them, these will remain in the body. Infections associated with implants may not be evident for up to a year after surgery.

“Second, the placement of an implant often means the removal of tissue, with interruption of blood supply and significant manipulation of the tissues immediately adjacent to the implant, creating an area of potential safety for microorganisms to multiply, further increasing the risk of infection.

“Third, because there is interrupted blood supply, antibiotics cannot easily get to the microorganisms if they do multiply enough to cause a clinical infection.

“Fourth, the implant itself may be vital to continuing function of a body system, such as would occur with a total joint replacement, vascular graft, or intraocular lens placement. An infection may not be curable with the implant in place, and removing it could cripple or kill the patient.”4

In addition: “The mortality rate (deaths) associated with infected total hip replacements approaches 50%, from the infection itself and from the complications associated with the resulting impaired mobility, such as blood clots and pneumonia.”4

Flash sterilization and identification

Flash Sterilization (i.e., abbreviated/express cycle) is defined as a process designed for the steam sterilization of patient care items for immediate use.1,2 For flash sterilization, labels are not used, but the following information should be generated for each sterilization cycle using a load record:

- sterilizer identification and cycle number;
- contents of load;
- time and temperature of exposure phase of cycle;
- signature or identification of operator;
- date and time of cycle.

“Flash sterilization of implantable devices is not recommended; however, if it is unavoidable, full traceability to the patient should be maintained.”2

Sterile package labels

The user must be able to identify the contents of a package before it is opened; therefore, it is imperative that the package is labeled completely and correctly. Proper labeling is also important for quality assurance, inventory control and stock-rotation purposes. Each package should include:

- a description of the package contents,
- the expiration date or a shelf life statement,
- the initials of the person assembling the package,
- the department where the package is to be sent after sterilization,
- identification of the sterilizer and cycle number, and
- the date of sterilization (load sticker).

Labeling should not harm the package material. A felt tip, quick-dry, nontoxic marker (e.g., Sharpie®) may be used to record the necessary information. With wrapped packages, the information should go on the sterilization indicator tape, never the wrap itself. (See Figure 1.) Labeling on paper-plastic pouches must be done on the clear plastic side only to avoid damaging the paper or bleeding of the ink that may damage the contents of the package.3

Figure 1

Some sterile processing departments utilize an automated bar code tracking system that has all the necessary information on preprinted labels. These labels are much easier to read and decrease the chance of mislabeling due to human error.

Sterile package closures

Once assembled, the sterilization package needs to be secured. The closure method chosen must ensure the package remains together, allow for sterilization penetration, avoid constriction of the pack, and maintain integrity of the package. “Tape (other than sterilization indicator tape) should not be used to secure packages, nor should safety pins, paper clips, staples, or other sharp objects.
Elastomer bands designed specifically for sterile packaging are acceptable as outside closures only if the wrapper manufacturer explicitly recommends their use and only if care is taken to choose the proper size (relative to the length and width of the package) so that the elastomer band fits snugly yet does not constrict the package (e.g., create an ‘hour-glass’ effect) or cause excessive wrinkles or folds in the package. Rubber bands or tape should not be used to hold instruments together in a group. Tip protectors, if used, should be steam-permeable, fit loosely, and be used according to the manufacturer’s instructions. The latching mechanism on rigid sterilization container systems should secure the lid so that it cannot move when locked.² (See Figure 2.)

Paper-plastic pouches

Peel pouches used for steam sterilization are made of paper and plastic. Pouches are frequently used to package small lightweight, low-profile items (e.g., one or two needle holders or small retractors). This is valuable when it is necessary to visualize the items before they are opened. Pouches are not recommended for heavy or bulky items because the seals may break open.²³

There are various size peel pouches and peel pack rolls (which can be cut to size) on the market today. Choosing the correct size and application of the pouch is important. If the pouch is too tight, the seal may not hold; and if it is too loose, the item will move too much, which could also stress the seals to the point of rupturing. Proper sizing also allows for adequate air removal, steam penetration and drying.²

Some peel pouches are self-sealing, meaning they come with a sticky strip that will fold over to form a seal after the item(s) is placed inside. Some need to be heat-sealed with a special machine that applies pressure and heat, which bonds the two sides together, forming a seal. (See Figure 3.) The user needs to make sure there are no wrinkles or gaps in the seal that could allow microorganisms to enter the package and contaminate it.

Single-peel pouching is sufficient unless the package contains more than one item or would be difficult to open aseptically with only one peel package (e.g., very small items). “If the item is to be double-packaged, two sequentially sized pouches should be used (i.e., the sealed inner pouch should fit inside the outer pouch without folding).” When assembled, the pouches should be positioned so that plastic of the inner one faces the plastic of the outside one.² (See Figure 4.)
Figure 5. Sequential double-wrapping: Envelope fold.

Figure 6. Sequential double-wrapping: Square fold.

Reprinted with permission from the Association for the Advancement of Medical Instrumentation, Inc. © 2006 AAMI. www.aami.org. All rights reserved.
Wrapping techniques

In order to maintain the sterility of a package the contents must be wrapped. It is crucial to choose the most appropriate material for the items being wrapped, as well as the type of sterilant to be used. Packages can be wrapped in two ways, sequential or simultaneous. When sequential wrapping is done, the items are wrapped twice, creating a pack within a pack. (See Figure 5.) When a pack is wrapped simultaneous the package is wrapped once with a special double layered synthetic nonwoven material bound on the sides.6 (See Figure 6.)

Whether you are using woven or nonwoven fabrics, there are two folding techniques commonly used for wrapping sterile packages. They are the envelope fold, most commonly used for smaller items, and instrument sets and the square fold, which is commonly used on larger packs.16 (See Figure 7.)

Textile packages

Woven textiles are reusable, but their barrier qualities diminish by repeated laundering and sterilization cycles. Textile wraps need to be laundered, delinted, and inspected for holes (over lighted tables), worn spots, fabric separation and stains before each use. Holes should be mended by using vulcanized or thermo-seal patches, and never stitched. Textile wrappers should be assessed for their appropriateness for particular sterilization cycles. All textiles should be preconditioned (freshly laundered and allowed to equilibrate to room temperature and relative humidity for at least two hours) before being used on a pack. Previously sterilized fabrics are dehydrated and can lead to superheating and, consequently, sterilization failure.

It is crucial to choose the most appropriate material for the items being wrapped, as well as the type of sterilant to be used.
Rigid containers

Reusable rigid container systems are used for the packaging, transportation and storage of surgical instruments prior to, during and after sterilization. (See Figure 8.) It is believed that rigid containers are better at protecting surgical instruments and maintaining sterility than wrapped items. Containers consist of a lid with a filter mechanism that allows the sterilant to enter and exit the container. These box-like structures act as a microbial barrier and have a tamper-proof seal. Built in handles on the containers make it easier to lift and carry packages, which is ergonomically better for the staff. Most rigid containers have labels attached for easy identification.

The manufacturer should provide:

- the recommendations regarding instrument type, placement and maximum weight;
- information on type of filters or wraps;
- locations of the most challenging area(s) for placement of biological indicators (BIs) and internal chemical indicators (CIs) for routine monitoring and product testing; and
- procedures for inspection and routine maintenance of the containment devices.
All of the container’s components (top, bottom, valve or filter mechanisms, securing or latching mechanisms) must function effectively as a unit. It is vital to the maintenance of sterility that these components work together to allow air removal, to facilitate sterilant penetration and removal, and to inhibit contamination.

Before assembly, the container should be inspected to ensure gaskets are pliable, securely fastened, and without breaks or cuts. The container should be free from cracks and dents, and the locking mechanism should function properly. If the container is not acceptable, remove from service and return for repair. Filter retention mechanisms and fasteners such as screws and rivets should be secure and not loose. If the filter is found loose, the sterility of the contents should be questioned.
Basins and basin sets

To facilitate removal of moisture, basin sets should be prepared so that all basins are oriented to face the same direction. If nested, they should be at least one difference in size and be separated with nonlinting absorbent material to facilitate air removal, steam penetration and steam removal during the sterilization and drying procedure. “The weight of wrapped basin sets should not exceed 7 pounds and the total number of basin sets per load should be evaluated to help ensure dry sets.”

Surgical supplies

Items such as syringes, needles, dressings and cotton balls should be individually packaged or packaged in small usable quantities. Do not use canisters with lids for these items because they do not allow for adequate air displacement, and the contents are compromised as soon as they are exposed to the environment. When packaging syringes, the barrel and the plunger should lie next to each other, and stylets should be removed from inside needles.

Devices with lumens

Devices with lumens such as catheters, needles, suctions and tubing should have their stylets or plugs removed and should be flushed with distilled or demineralized water just prior to packaging and sterilization. The moisture in the lumens will generate steam from within the lumen.

Instrument preparation and assembly

Preparing and assembling of instrument sets is a complex procedure. “Instrument sets should be sterilized in perforated or wire-mesh bottom trays or in containment devices such as specially designed rigid organizing trays or rigid sterilization container systems, with all instruments held open and unlocked. (See Figures 11 and 12.) Multipart instruments should be disassembled for sterilization unless the device manufacturer provides validated instructions to the contrary. If commercially customized organizing trays or cassettes are used, the health care facility should request scientific documentation from the manufacturer that
demonstrates the efficacy of the tray or cassette instrumentation arrangement in the steam sterilization cycle available to the facility.”

Maximum weight

According to AAMI, “The combined weight of the containment device, the instruments, and accessories or wrappers shall not exceed 25 pounds when the containment device load is configured according to the manufacturer’s instructions. **Rationale:** When containment devices, including their contents and any accessories or wrappers, are too heavy, sterilization and/or drying may be compromised in commonly available hospital sterilization cycles (according to ANSI/AAMI ST79, drying time is typically 20 to 30 minutes.”"
It is not appropriate to put paper-plastic pouches within wrapped sets or containment devices because the pouches cannot be positioned to ensure adequate air removal, steam contact and drying.

Containment devices and tray liners

It is not appropriate to put paper-plastic pouches within wrapped sets or containment devices because the pouches cannot be positioned to ensure adequate air removal, steam contact and drying. “The practice of confining instruments in paper-plastic pouches and then including them in wrapped or containerized sets (double-wrapping with dissimilar materials) has not been validated as appropriate and efficacious by any wrap, containment device, or paper-plastic manufacturer.”

There are other items that can be used to contain or group small items within sets such as absorbent, single layer, flat wraps, and appropriate foam products or all paper autoclave bags (See Figures 12 and 13.) There are also small perforated mesh-bottom baskets with lids that can be used for this purpose. (See Figure 14.)

Drying problems can be improved with the use of tray liners or other absorbent material. Drying is more efficient when the condensate is wicked away from the instruments and dispersed over a greater surface area.

Whatever you choose to use, it is important to make sure the items have been validated by the manufacturer to be used within sterile trays.
Inspection

Instruments should be dry and meticulously checked for cleanliness and defects or damage before assembly and packaging. All containment devices should be examined for any sharp edges, nicks or loose wire mesh to prevent tearing or perforating the wrapper. Rigid sterilization containers should be checked for all working parts before being used.2

Loading the sterilizer

Only packages that require the same sterilization time, temperature and drying time should be run in a load together. “If a cart shelf liner is used, it should be made of a nonlinting, absorbent material that will dry in the drying time selected for the rest of the load. Load configurations should ensure adequate air removal, penetration of steam into each package, and steam evacuation. Items capable of holding water, such as solid-bottomed pans, basins, and trays, should be positioned so that they are oriented in the same direction and so that condensate can be eliminated (i.e., arranged in such a way—normally on their sides—that if water is present, it will drain out.”2 Metal items should not be placed over textile packages. The sterilizer manufacturer’s written recommendations should always be followed.
Placement of peel pouches

Peel packs should not lie flat on the cart shelf. They should stand on edge with the paper side of one pouch next to the plastic side of the next pouch. (See Figure 15.) There are special holding racks available to stand the peel packs on edge while properly spacing the packages, which helps to facilitate the steam contact and drying.2

Figure 15

Placement of instrument sets

Instrument sets in perforated trays or rigid sterilization containers systems should be positioned flat on the sterilizer cart or shelf so that the bottom of the set touches the bottom of the shelf. (See Figures 16 and 17.) This arrangement will keep the instruments in an orderly fashion while preventing instrument damage, and will allow for easier air removal, sterilant penetration, condensate drainage and aid in drying. Stacking containers in the sterilizer could interfere with the air evacuation, sterilant penetration and drying; therefore, the manufacturer’s recommendations and documentation should be carefully consulted before attempting to stack rigid container systems. “The appropriateness of stacking container systems in the sterilizer depends on the design of the container system and the method of sterilization.”2

Textile packs

To facilitate air removal, steam penetration and drying, textile packages should be loaded on the cart loosely, standing on their edge so that all fabric layers are not stacked one upon the other.2

Utensils and glassware

To allow for efficient displacement of air and speedy, even distribution of steam all the way through the load, items such as cups, bowls, solid-bottom pans and trays should be tilted on edge and facing the same direction. This position will also help eliminate pooling of condensate.

Summary

Healthcare providers are responsible for minimizing risks to patients. The risk of surgical wound infections can be decreased by ensuring all surgical items are free of contamination at the time of use. Sterility maintenance is important in ensuring items are not contaminated once they come out of the sterilizer. Evidence-based practice is the foundation of patient safety; therefore, many standards and recommended practices have been established for sterilization packaging systems, preparations and loading of steam sterilizers. These recommendations should be used as guidelines for the development of polices and procedures for packaging, preparation and loading sterile items. Following these proven standards will help to provide the highest quality of care to your patients.
Glossary

- **Nonwoven materials:**
 A sheet, web or batt of natural and/or synthetic fibers of filaments, excluding paper, that have not been converted into yarns and that are not bonded to each other by several means.

- **Packaging systems:**
 A generic term meant to include all types of packaging, such as wrapping materials, pouches and rigid container systems.

- **Rigid sterilization container system:**
 Specifically designed heat-resistant metal, plastic, or anodized aluminum receptacles used to package items, usually surgical instruments, for sterilization. The lids and/or bottom surfaces contain steam- or gas-permeable, high-efficiency microbial filters.

- **Sequential wrapping:**
 A double-wrapping procedure that creates a package within a package.

- **Superheating:**
 A condition in which dehydrated textiles are subjected to steam sterilization. The package or product becomes too dry and causes destructive effects on the strength of the cloth fibers. In addition, the dehydrated textiles absorb moisture that may compromise the efficiency of the sterilization process.

- **Useful life:**
 Length of time, as determined by the manufacturer, for which a product maintains acceptable safety and performance characteristics. The manufacturer should provide materials data to support useful life.

- **Woven textile:**
 A reusable fabric constructed from yarns made of natural and/or synthetic fibers or filaments that are woven or knitted together to form a web in a repeated interlocking pattern.

Ordering Information

AAMI

ANSI/AAMI ST79:2006, *Comprehensive guide to steam sterilization and sterility assurance in health care facilities*

Order code: ST79 or ST79-PDF

Available in an attractive binder featuring sturdy metal rings, ledger-weight pages and a laminated tab for each section for easy navigation. AAMI will issue revised pages that can be substituted into the binder when changes are made.

Also available in PDF format and as part of AAMI’s electronic CD and subscription products.

Price/Member discount price: $200/$100

AAMI documents can be purchased through AAMI by credit card using the following four options:

1. Internet: http://www.aami.org
2. Call: 800.332.2264, ext 217 or .703.525.4890, ext 217
3. Fax: 703.525.1424
4. Mail: AAMI, Customer Service Center, 1100 N. Glebe Road, Suite 220, Arlington, VA 22201-5762

AORN

AORN Standards can be purchased through AORN using the following options:

1. Internet: www.aorn.org/bookstore/ordering.htm
2. Call: 800.755.2676, ext 1 or 303.755.6304 ext 1 (Monday-Friday, 8 a.m. to 4:30 p.m. MST)
3. Fax: 303.750.3212
4. By mail: AORN, Inc., Customer Service/Book Orders, 2170 South Parker Road, Suite 300, Denver, CO 80231-5711

Payment can be made by VISA, MasterCard, American Express or Discover, either online or by mail/fax/phone. By authorized PO, and AORN will bill you ($100 minimum purchase). Sorry, we cannot accept POs for education conferences or services. (Not available for online orders.)

5. A CD-rom of the standards is available for the first time this year.

References

Sterile Process and Distribution CEU Information

CEU Applicant Name ________________________________

Address ___

City __________________________ State ______ Zip Code __________

The CBSPD (Certification Board for Sterile Processing and Distribution) has pre-approved this inservice for 1 contact hour for a period of five years from the date of publication and to be used once in a re-certification period. Successful completion of the lesson and post test must be documented by facility management and those records maintained by the individuals until re-certification is required. DO NOT SEND LESSON OR TEST TO CBSGD.

For additional information regarding Certification contact: CBSPD, 2 Industrial Park Road, Suite 3, Alpha, NJ 08865 or call 908.454.9555 or visit Web site at www.sterileprocessing.org.

IAHCSMM has awarded 1 contact point for completion of this continuing education lesson toward IAHCSMM recertification.

Nursing CE Application Form

3M Health Care provider approved by the California Board of Registered Nurses, CEP 5770 for 1 contact hour. This form is valid up to five years from the date of publication.
1. Make a photocopy of this form.
2. Print your name, address and daytime phone number and position/title.
3. Add your social security number or your nursing license number.
4. Date the application and sign.
5. Answer the CE questions.
6. Submit this form and the answer sheet to:
 Workhorse Publishing
 Managing Infection Control
 PO Box 25310, Scottsdale, AZ 85255-9998
7. Participants who score at least 70% will receive a certificate of completion within 30 days of Managing Infection Control’s receipt of the application.

Application

Please print or type.

Name __

Mailing Address __

City, State, Country, Zip ___

Daytime phone () ___

Position/Title __

Social Security or Nursing License Number ____________________________

Date application submitted ____________________________

Signature __

Offer expires December 2011

On a scale of 1-5, 5 being Excellent and 1 being Poor, please rate this program for the following:

1) Overall content __________________________

2) Met written objectives __________________________

3) Usability of content __________________________

<12/06>

Rose Seavey RN, MBA, CNOR, ACSP, is the Director of the Sterile Processing Department at The Children’s Hospital of Denver. Ms. Seavey is an active member of the Association of periOperative Registered Nurses (AORN) and currently sits on the National Nominating Committee. She was honored with AORN’s award for Outstanding Achievement in Clinical Nurse Education in 2001. She served as the President of the American Society of Healthcare Central Service Professionals (ASHCSP) in 2003 and is the 2002 recipient of ASHCSP National Educator of the Year award. Ms. Seavey is a member of several AAMI working group committees that are developing recommended practices and is currently co-chair for the AAMI ST8, Hospital steam sterilizers. In addition she has lectured and authored many articles on various topics relating to perioperative services and sterile processing, locally, nationally and internationally.

ANSWERS

1. T 6. T
2. T 7. F
3. F 8. F
4. F 9. T
5. T 10. T